Journal of Organometallic Chemistry, 259 (1983) 165–170 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

# SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND MOLECULAR STRUCTURE OF PENTACARBONYL-5-t-BUTYL-5-AZA-2,8-DITHIA-1-STANNOBÍCYCLO[3.3.0<sup>1.5</sup>]OCTANECHROMIUM(0)

A. TZSCHACH, K. JURKSCHAT, M. SCHEER,

Martin - Luther - University Halle - Wittenberg, 402 Halle (S), Weinbergweg 16 (G.D.R.)

#### J. MEUNIER-PIRET and M. VAN MEERSSCHE

Laboratoire de Chimie Physique et de Cristallographie, Université de Louvain, Batiment Lavoisier, Place L. Pasteur 1, B-1348 Louvain-la-Neuve (Belgium)

(Received July 1st, 1983)

#### Summary

The compound pentacarbonyl-5-t-butyl-5-aza-2,8-dithia-1-stannobicyclo-[3.3.0<sup>1,5</sup>]octanechromium(0) was prepared in good yield by the reaction of 5-t-butyl-5-aza-2,8-dithia-1-stannobicyclo[3.3.0<sup>1,5</sup>]octane with  $Cr(CO)_6$  in THF under UVirradiation. The crystal and molecular structure was determined from three-dimensional X-ray data. The crystals are monoclinic, space group  $P2_1/c$ . The unit cell, with dimensions a 14.963(9), b 10.026(5), c 13.565(5)Å,  $\beta$  114.68°(5), contains 4 molecules. The structure was solved by the Patterson-method. The full-matrix refinement with the 2734 independent reflexions gave a final R value of 0.034. The eight-membered ring adopts an asymmetric boat-boat conformation with a tin-nitrogen bond length of 2.40 Å; the tin-chromium bond length is 2.62 Å.

### Introduction

Recently we reported the tin(II)-containing bicyclic octanes of the general type  $Sn(XCH_2CH_2)_2Y$  with X = O, S and Y = NR, PR, O and S [1-3]. These compounds show a more or less strong tin-Y interaction, the strength depending on the nature of the heteroatoms X and Y. Our objective was to investigate the behaviour of these compounds as complexing ligands for transition metals and the influence of that complexation on the Sn-Y bond strength.

# **Results and discussion**

The reaction of 5-t-butyl-5-aza-2,8-dithia-1-stannobicyclo[3.3.0<sup>1,5</sup>]octane with chromium hexacarbonyl gave the corresponding tin(II)-substituted transition metal

| Nucleus           | Chemical shifts (ppm) |           |      |      |      |       |  |
|-------------------|-----------------------|-----------|------|------|------|-------|--|
|                   | 1                     | 3/7       | 4/6  | 9    | 10   | 11    |  |
| <sup>1</sup> H    |                       | 3.05/3.17 | 3.35 |      | 1.55 |       |  |
| <sup>13</sup> C   |                       | 32.5      | 58.7 | 64.0 | 29.0 | 217.5 |  |
| <sup>119</sup> Sn | 622.8                 |           |      |      |      |       |  |

<sup>1</sup>H, <sup>13</sup>C AND <sup>119</sup>Sn NMR DATA IN CDCl<sub>3</sub> AT T 301 K

complex in high yield (eq. 1, 2).

$$Cr(CO)_{6} \xrightarrow{\text{THF, }h\nu} Cr(CO)_{5} \cdot \text{THF}$$
(1)  
$$Cr(CO)_{5} \cdot \text{THF} + \text{Sn}(\text{SCH}_{2}\text{CH}_{2})_{2}\text{NBu}^{1} \xrightarrow{-\text{THF}} \text{Bu}^{1}\text{N}(\text{CH}_{2}\text{CH}_{2}\text{S})_{2}\text{SnCr}(CO)_{5}$$
(2)



The complex is a yellow, air-stable, crystalline solid and is monomeric in benzene. The <sup>1</sup>H NMR spectrum is temperature dependent and indicates the existence of a dissociation-inversion process for the complexed as for the free ligand (see Table 1) [2,3]. The <sup>13</sup>C NMR spectrum shows the equivalence of the 3 and 7 carbon atoms and also of the 4 and 6 carbon atoms (Table 1). The broadening of the <sup>13</sup>C NMR signal of C(10) is consistent with a hindered rotation of the butyl group attached to the nitrogen atom. In the <sup>119</sup>Sn NMR spectrum there is a signal at very low field compared to that for the free ligand. This effect has been noticed in tin(II) halide complexes of transition metals [4].



Fig. 1. Geometry of the complex and numbering of the atoms.

TABLE 1



Fig. 2. The unit-cell packing.

H(8)

There are four IR absorptions for the carbonyl fragment ( $A_1^{(2)}$ , 2050;  $B_1$ , 1972;  $A_1^{(1)}$  1948; E 1910 cm<sup>-1</sup>) indicating a distorted  $C_{4_p}$  symmetry.

|       | x       | у       | Z       |  |
|-------|---------|---------|---------|--|
| Sn    | 3300(0) | 5017(0) | 5009(0) |  |
| Cr    | 2292(1) | 3086(1) | 3722(1) |  |
| S(1)  | 4287(1) | 6634(1) | 4574(1) |  |
| S(2)  | 4238(1) | 4514(2) | 6914(1) |  |
| O(1)  | 1272(4) | 2437(5) | 5188(4) |  |
| O(2)  | 556(3)  | 4744(5) | 2243(4) |  |
| O(3)  | 3295(4) | 3859(5) | 2253(4) |  |
| O(4)  | 1330(4) | 718(5)  | 2342(4) |  |
| O(5)  | 3884(3) | 1134(5) | 5078(4) |  |
| C(1)  | 1659(4) | 2712(6) | 4647(5) |  |
| C(2)  | 1225(4) | 4156(6) | 2831(5) |  |
| C(3)  | 2938(4) | 3554(6) | 2821(5) |  |
| C(4)  | 1700(4) | 1628(6) | 2855(5) |  |
| C(5)  | 3313(4) | 1917(6) | 4583(5) |  |
| N     | 2780(3) | 6931(4) | 5696(3) |  |
| C(11) | 4433(5) | 7666(6) | 5731(6) |  |
| C(12) | 3465(5) | 8069(6) | 5765(6) |  |
| C(21) | 3943(5) | 5975(8) | 7512(5) |  |
| C(22) | 2937(5) | 6531(8) | 6831(5) |  |
| C(6)  | 1706(4) | 7323(6) | 5020(5) |  |
| C(7)  | 1013(4) | 6190(7) | 5035(6) |  |
| C(8)  | 1555(5) | 7553(7) | 3822(5) |  |
| C(9)  | 1428(5) | 8629(7) | 5461(6) |  |
| H(1)  | 490(4)  | 710(6)  | 639(5)  |  |
| H(2)  | 477(4)  | 841(6)  | 570(4)  |  |
| H(3)  | 367(5)  | 852(7)  | 656(5)  |  |
| H(4)  | 309(4)  | 848(6)  | 512(4)  |  |
| H(5)  | 454(5)  | 669(7)  | 766(6)  |  |
| H(6)  | 400(5)  | 565(8)  | 825(6)  |  |
| 11/7  | 220(6)  | 577(0)  | ((0)()) |  |

727(6)

714(5)

| TABLE 2                                         |
|-------------------------------------------------|
| FRACTIONAL ATOMIC COORDINATES ( $\times 10^4$ . |

285(4)

| Cr-Sn       | 2.622(1) |  |
|-------------|----------|--|
| S(1)-Sn     | 2.426(1) |  |
| S(2)-Sn     | 2.423(1) |  |
| N-Sn        | 2.400(4) |  |
| C(1)-Cr     | 1.899(6) |  |
| C(2)-Cr     | 1.883(6) |  |
| C(3)-Cr     | 1.907(6) |  |
| C(4)–Cr     | 1.853(6) |  |
| C(5)-Cr     | 1.893(6) |  |
| C(11)-S(1)  | 1.815(6) |  |
| C(21)-S(2)  | 1.816(7) |  |
| C(1)-O(1)   | 1.142(7) |  |
| C(2)-O(2)   | 1,149(7) |  |
| C(3)-O(3)   | 1.148(7) |  |
| C(4)O(4)    | 1.140(7) |  |
| C(5)-O(5)   | 1.147(7) |  |
| C(12)–N     | 1.510(7) |  |
| C(22)-N     | 1.511(7) |  |
| C(6)-N      | 1.533(6) |  |
| C(12)-C(11) | 1.523(8) |  |
| C(22)-C(21) | 1.506(9) |  |
| C(7)-C(6)   | 1.544(8) |  |
| C(8)-C(6)   | 1.562(8) |  |
| C(9)-C(6)   | 1.566(8) |  |
| H(1)-C(11)  | 1.05(6)  |  |
| H(2)-C(11)  | 0.91(6)  |  |
| H(3)-C(12)  | 1.09(6)  |  |
| H(4)-C(12)  | 0.92(5)  |  |
| H(5)-C(21)  | 1.10(7)  |  |
| H(6)-C(21)  | 1.02(7)  |  |
| H(7)-C(22)  | 1.08(8)  |  |
| H(8)-C(22)  | 0.89(6)  |  |
|             |          |  |

BOND LENGTHS (Å) WITH STANDARD DEVIATIONS

The structure of the complex is illustrated in Fig. 1, and the packing in the unit-cell in Fig. 2.

The atomic coordinates are given in Table 2, and the bond lengths and the bond angles in Tables 3 and 4, respectively. The coordination around the Cr atom is a nearly perfect octahedron, while that around the Sn atom is a distorded tetrahedron.

The tin-nitrogen bond length of 2.40 Å is 0.17 Å shorter than in the 1-methyl-5,5-dimethyldipychthiazastannolidine [5,6], reflecting a stronger Lewis-acceptor capacity of the tin(II) complex. In the (di-t-butylstannylene)pyridinopentacarbonylchromium the Sn-N bond is 0.11 Å shorter [7]. The tin-sulfur distances are in the expected range for a single bond [8,11,12]. The Sn-Cr bond length is nearly the same as in the But<sub>2</sub>SnCr(CO)<sub>5</sub> · py [7] but significantly longer than in [(Me<sub>3</sub>Si)<sub>2</sub>CH]<sub>2</sub>SnCr(CO)<sub>5</sub> [9]. This reflects a decreased  $d_{\pi}$ - $p_{\pi}$  interaction in the two former compounds due to the higher electron density at the tin atoms. The tin atom in the title compound lies 0.50 Å above the plane defined by the atoms Cr, S(1) and S(2); in ref. 7 the tin atom deviates by 0.44 Å from the plane Cr,C,C; in ref. 9 no

TABLE 3

#### **TABLE 4**

| S(1)-Sn-Cr        | 124.8(0) | O(1)-C(1)-Cr       | 177.3(6) |
|-------------------|----------|--------------------|----------|
| S(2)-Sn-Cr        | 118.2(0) | O(2)-C(2)-Cr       | 175.8(5) |
| S(2) - Sn - S(1)  | 104.9(1) | O(3)-C(3)-Cr       | 177.4(5) |
| N-Sn-Cr           | 131.3(1) | O(4)-C(4)-Cr       | 178.2(6) |
| N-Sn-S(1)         | 83.6(1)  | O(5)-C(5)-Cr       | 175.0(5) |
| N-Sn-S(2)         | 83.7(1)  | C(12)-N-Sn         | 107.8(3) |
| C(1)-Cr-Sn        | 90.7(2)  | C(22)-N-Sn         | 104.2(3) |
| C(2)-Cr-Sn        | 96.0(2)  | C(22) - N - C(12)  | 109.0(5) |
| C(2)-Cr-C(1)      | 90.8(3)  | C(6)-N-Sn          | 113.7(3) |
| C(3)-Cr-Sn        | 86.6(2)  | C(6) - N - C(12)   | 111.0(4) |
| C(3)-Cr-C(1)      | 177.0(2) | C(6) - N - C(22)   | 110.9(4) |
| C(3) - Cr - C(2)  | 88.3(2)  | C(12)-C(11)-S(1)   | 113.8(4) |
| C(4)-Cr-Sn        | 174.1(2) | C(11)-C(12)-N      | 115.3(5) |
| C(4) - Cr - C(1)  | 91.5(3)  | C(22)-C(21)-S(2)   | 113.0(5) |
| C(4) - Cr - C(2)  | 89.4(2)  | C(21)-C(22)-N      | 114.5(5) |
| C(4)-Cr-C(3)      | 91.3(2)  | C(7)-C(6)-N        | 110.2(4) |
| C(5)-Cr-Sn        | 87.4(2)  | C(8)-C(6)-N        | 108.7(4) |
| C(5)-Cr-C(1)      | 88.1(2)  | C(8)-C(6)-C(7)     | 108.4(5) |
| C(5) - Cr - C(2)  | 176.5(2) | C(9)-C(6)-N        | 111.4(5) |
| C(5) - Cr - C(3)  | 93.0(2)  | C(9) - C(6) - C(7) | 108.8(5) |
| C(5)-Cr-C(4)      | 87.2(2)  | C(9) - C(6) - C(8) | 109.2(5) |
| C(11) - S(1) - Sn | 92.1(2)  |                    | (-)      |
| C(21)-S(2)-Sn     | 99.7(2)  |                    |          |
|                   |          |                    |          |

deviation was observed. However, the other atoms attached to the tin can influence the nature of the tin-chromium bond, and therefore it would be better to be able to compare our data with these for the still unknown complexes such as  $(RS)_2SnCr(CO)_5$  and  $(RS)_2SnCr(CO)_5 \cdot py$ .

Eight-membered organotin(IV) compounds of the type  $R_2Sn(SCH_2CH_2)_2Y$  with Y = O, S and NMe generally exhibit chair-chair, boat-chair [5,10] or intermediate conformations [11,12]. In our complex there is a boat-boat conformation (Table 5), perhaps due to the shortening of the Sn-N bond length in comparison to  $Me_2Sn(SCH_2CH_2)_2NMe$  [5]. A similar conformation was found in  $Sn[(OCH_2CH_2)_2NCH_2CH_2OH]_2$  [13].

TABLE 5

### **TORSION ANGLES (°)**

|                          | . 70 / 0 |
|--------------------------|----------|
| S(1) - Sn - S(2) - C(21) | + /8.60  |
| Sn-S(2)-C(21)-C(22)      | + 30.41  |
| S(2)-C(21)-C(22)-N       | - 58.36  |
| C(21)-C(22)-N-C(12)      | - 64.47  |
| C(22)-N-C(12)-C(11)      | + 95.14  |
| N-C(12)-C(11)-S(1)       | + 53.60  |
| C(12)-C(11)-S(1)-Sn      | - 54.70  |
| C(11)-S(1)-Sn-S(2)       | - 50.04  |

## Experimental

All manipulations were carried out under dry argon. The solvents were dried by standard methods and freshly destilled before used. The NMR spectra were recorded on a spectrometer Bruker WP 200, and the IR spectra on a Beckmann IR 12 instrument using KBr discs.

Pentacarbonyl-5-t-butyl-5-aza-2,8-dithia-1-stannobicyclo[ $3.3.0^{1.5}$ ]octanechromium-(0). A solution of 1.3 g (4.4 mmol) Sn(SCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>NBu<sup>t</sup>, in 200 ml THF was added dropwise to a solution of 6.8 mmol Cr(CO)<sub>5</sub> · THF in 300 ml THF. The mixture was stirred for 3 h at room temperature and than evaporated under vacuum. The precipitate was filtered off and recrystallised from benzene (yields 1.4 g (64%), m.p. 190°C (dec.)). Found: C, 31.24; H, 3.95; N, 2.68; S, 12.96. C<sub>13</sub>H<sub>17</sub>NS<sub>2</sub>Sn calcd.: C, 31.09; H, 3.82; N, 2.75; S, 12.76%.

### References

- 1 A. Tzschach and W. Uhlig, Z. Anorg. Allg. Chem., 475 (1981) 251.
- 2 A. Zschunke, C. Mügge, A. Tzschach, M. Scheer and K. Jurkschat, J. Cryst. Spec. Res., 13 (1983) 201.
- 3 A. Tzschach, M. Scheer, K. Jurkschat, A. Zschunke and C. Mügge, Z. Anorg. Allg. Chem., 502 (1983) 158.
- 4 W.W. Du Mont and H.J. Kroth, Z. Naturforsch. B, 35 (1980) 82.
- 5 M. Dräger, private communication.
- 6 C. Mügge, K. Jurkschat, A. Tzschach and A. Zschunke, J. Organomet. Chem., 164 (1979) 135.
- 7 M.D. Brice and F.A. Cotton, J. Amer. Chem. Soc., 95 (1973) 4529.
- 8 M. Dräger, Z. Anorg. Allg. Chem., 423 (1976) 53.
- 9 J.D. Cotton, P.J. Davison, D.E. Goldberg, M.F. Lappert and K.M. Thomas, J. Chem. Soc., Chem. Comm., (1974) 893.
- 10 M. Dräger, Z. Anorg. Allg. Chem., 428 (1977) 243.
- 11 M. Dräger, Z. Naturforsch. B, 36 (1981) 437.
- 12 M. Dräger, Chem. Ber., 114 (1981) 2051.
- 13 R. Friedler and H. Follner, Monatsh. Chem., 108 (1977) 319.